Saturday, October 1, 2011

Lindeberg on Obesity

I'm currently reading Dr. Staffan Lindeberg's magnum opus Food and Western Disease, recently published in English for the first time. Dr. Lindeberg is one of the world's leading experts on the health and diet of non-industrial cultures, particularly in Papua New Guinea. The book contains 2,034 references. It's also full of quotable statements. Here's what he has to say about obesity:
Middle-age spread is a normal phenomenon - assuming you live in the West. Few people are able to maintain their [youthful] waistline after age 50. The usual explanation - too little exercise and too much food - does not fully take into account the situation among traditional populations. Such people are usually not as physically active as you may think, and they usually eat large quantities of food.

Overweight has been extremely rare among hunter-gatherers and other traditional cultures [18 references]. This simple fact has been quickly apparent to all foreign visitors...

The Kitava study measured height, weight, waist circumference, subcutaneous fat thickness at the back of the upper arm (triceps skinfold) and upper arm circumference on 272 persons ages 4-86 years. Overweight and obesity were absent and average [body mass index] was low across all age groups. ...no one was larger around their waist than around their hips.

...The circumference of the upper arm [mostly indicating muscle mass] was only negligibly smaller on Kitava [compared with Sweden], which indicates that there was no malnutrition. It is obvious from our investigations that lack of food is an unknown concept, and that the surplus of fruits and vegetables regularly rots or is eaten by dogs.

The Population of Kitava occupies a unique position in the world in terms of the negligible effect that the Western lifestyle has had on the island.
The only obese Kitavans Dr. Lindeberg observed were two people who had spent several years off the island living a modern, urban lifestyle, and were back on Kitava for a visit.

I'd recommend this book to anyone who has a scholarly interest in health and nutrition, and somewhat of a background in science and medicine. It's extremely well referenced, which makes it much more valuable.

Malocclusion: Disease of Civilization, Part VIII

Three Case Studies in Occlusion

In this post, I'll review three cultures with different degrees of malocclusion over time, and try to explain how the factors I've discussed may have played a role.

The Xavante of Simoes Lopes

In 1966, Dr. Jerry D. Niswander published a paper titled "The Oral Status of the Xavantes of Simoes Lopes", describing the dental health and occlusion of 166 Brazilian hunter-gatherers from the Xavante tribe (free full text). This tribe was living predominantly according to tradition, although they had begun trading with the post at Simoes Lopes for some foods. They made little effort to clean their teeth. They were mostly but not entirely free of dental cavities:
Approximately 33% of the Xavantes at Simoes Lopes were caries free. Neel et al. (1964) noted almost complete absence of dental caries in the Xavante village at Sao Domingos. The difference in the two villages may at least in part be accounted for by the fact that, for some five years, the Simoes Lopes Xavante have had access to sugar cane, whereas none was grown at Sao Domingos. It would appear that, although these Xavantes still enjoy relative freedom from dental caries, this advantage is disappearing after only six years of permanent contact with a post of the Indian Protective Service.
The most striking thing about these data is the occlusion of the Xavante. 95 percent had ideal occlusion. The remaining 5 percent had nothing more than a mild crowding of the incisors (front teeth). Niswander didn't observe a single case of underbite or overbite. This would have been truly exceptional in an industrial population. Niswander continues:
Characteristically, the Xavante adults exhibited broad dental arches, almost perfectly aligned teeth, end-to-end bite, and extensive dental attrition. At 18-20 years of age, the teeth were so worn as to almost totally obliterate the cusp patterns, leaving flat chewing surfaces.
The Xavante were clearly hard on their teeth, and their predominantly hunter-gatherer lifestyle demanded it. They practiced a bit of "rudimentary agriculture" of corn, beans and squash, which would sustain them for a short period of the year devoted to ceremonies. Dr. James V. Neel describes their diet (free full text):
Despite a rudimentary agriculture, the Xavante depend very heavily on the wild products which they gather. They eat numerous varieties of roots in large quantities, which provide a nourishing, if starchy, diet. These roots are available all year but are particularly important in the Xavante diet from April to June in the first half of the dry season when there are no more fruits. The maize harvest does not last long and is usually saved for a period of ceremonies. Until the second harvest of beans and pumpkins, the Xavante subsist largely on roots and palmito (Chamacrops sp.), their year-round staples.

From late August until mid-February, there are also plenty of nuts and fruits available. The earliest and most important in their diet is the carob or ceretona (Ceretona sp.), sometimes known as St. John's bread. Later come the fruits of the buriti palm (Mauritia sp.) and the piqui (Caryocar sp.). These are the basis of the food supply throughout the rainy season. Other fruits, such as mangoes, genipapo (Genipa americana), and a number of still unidentified varieties are also available.

The casual observer could easily be misled into thinking that the Xavante "live on meat." Certainly they talk a great deal about meat, which is the most highly esteemed food among them, in some respects the only commodity which they really consider "food" at all... They do not eat meat every day and may go without meat for several days at a stretch, but the gathered products of the region are always available for consumption in the community.

Recently, the Xavante have begun to eat large quantities of fish.
The Xavante are an example of humans living an ancestral lifestyle, and their occlusion shows it. They have the best occlusion of any living population I've encountered so far. Here's why I think that's the case:
  • A nutrient-rich, whole foods diet, presumably including organs.
  • On-demand breast feeding for two or more years.
  • No bottle-feeding or modern pacifiers.
  • Tough foods on a regular basis.
I don't have any information on how the Xavante have changed over time, but Niswander did present data on another nearby (and genetically similar) tribe called the Bakairi that had been using a substantial amount of modern foods for some time. The Bakairi, living right next to the Xavante but eating modern foods from the trading post, had 9 times more malocclusion and nearly 10 times more cavities than the Xavante. Here's what Niswander had to say:
Severe abrasion was not apparent among the Bakairi, and the dental arches did not appear as broad and massive as in the Xavantes. Dental caries and malocclusion were strikingly more prevalent; and, although not recorded systematically, the Bakairi also showed considerably more periodontal disease. If it can be assumed that the Bakairi once enjoyed a freedom from dental disease and malocclusion equal to that now exhibited by the Xavantes, the available data suggest that the changes in occlusal patterns as well as caries and periodontal disease have been too rapid to be accounted for by an hypothesis involving relaxed [genetic] selection.
The Masai of Kenya

The Masai are traditionally a pastoral people who live almost exclusively from their cattle. In 1945, and again in 1952, Dr. J. Schwartz examined the teeth of 408 and 273 Masai, respectively (#1 free full text; #2 ref). In the first study, he found that 8 percent of Masai showed some form of malocclusion, while in the second study, only 0.4 percent of Masai were maloccluded. Although we don't know what his precise criteria were for diagnosing malocclusion, these are still very low numbers.

In both studies, 4 percent of Masai had cavities. Between the two studies, Schwartz found 67 cavities in 21,792 teeth, or 0.3 percent of teeth affected. This is almost exactly what Dr. Weston Price found when he visited them in 1935. From Nutrition and Physical Degeneration, page 138:

In the Masai tribe, a study of 2,516 teeth in eighty-eight individuals distributed through several widely separated manyatas showed only four individuals with caries. These had a total of ten carious teeth, or only 0.4 per cent of the teeth attacked by tooth decay.
Dr. Schwartz describes their diet:
The principal food of the Masai is milk, meat and blood, the latter obtained by bleeding their cattle... The Masai have ample means with which to get maize meal and fresh vegetables but these foodstuffs are known only to those who work in town. It is impossible to induce a Masai to plant their own maize or vegetables near their huts.
This is essentially the same description Price gave during his visit. The Masai were not hunter-gatherers, but their traditional lifestyle was close enough to allow good occlusion. Here's why I think the Masai had good occlusion:
  • A nutrient-dense diet rich in protein and fat-soluble vitamins from pastured dairy.
  • On-demand breast feeding for two or more years.
  • No bottle feeding or modern pacifiers.
The one factor they lack is tough food. Their diet, composed mainly of milk and blood, is predominantly liquid. Although I think food toughness is a factor, this shows that good occlusion is not entirely dependent on tough food.

Sadly, the lifestyle and occlusion of the Masai has changed in the intervening decades. A paper from 1992 described their modern diet:
The main articles of diet were white maize, [presumably heavily sweetened] tea, milk, [white] rice, and beans. Traditional items were rarely eaten... Milk... was not mentioned by 30% of mothers.
A paper from 1993 described the occlusion of 235 young Masai attending rural and peri-urban schools. Nearly all showed some degree of malocclusion, with open bite alone affecting 18 percent.

Rural Caucasians in Kentucky

It's always difficult to find examples of Caucasian populations living traditional lifestyles, because most Caucasian populations adopted the industrial lifestyle long ago. That's why I was grateful to find a study by Dr. Robert S. Corruccini, published in 1981, titled "Occlusal Variation in a Rural Kentucky Community" (ref).

This study examined a group of isolated Caucasians living in the Mammoth Cave region of Kentucky, USA. Corruccini arrived during a time of transition between traditional and modern foodways. He describes the traditional lifestyle as follows:
Much of the traditional way of life of these people (all white) has been maintained, but two major changes have been the movement of industry and mechanized farming into the area in the last 25 years. Traditionally, tobacco (the only cash crop), gardens, and orchards were grown by each family. Apples, pears, cherries, plums, peaches, potatoes, corn, green beans, peas, squash, peppers, cucumbers, and onions were grown for consumption, and fruits and nuts, grapes, and teas were gathered by individuals. In the diet of these people, dried pork and fried [presumably in lard], thick-crust cornbread (which were important winter staples) provided consistently stressful chewing. Hunting is still very common in the area.
Although it isn't mentioned in the paper, this group, like nearly all traditionally-living populations, probably did not waste the organs or bones of the animals it ate. Altogether, it appears to be an excellent and varied diet, based on whole foods, and containing all the elements necessary for good occlusion and overall health.

The older generation of this population has the best occlusion of any Caucasian population I've ever seen, rivaling some hunter-gatherer groups. This shows that Caucasians are not genetically doomed to malocclusion. The younger generation, living on more modern foods, shows very poor occlusion, among the worst I've seen. They also show narrowed arches, a characteristic feature of deteriorating occlusion. One generation is all it takes. Corruccini found that a higher malocclusion score was associated with softer, more industrial foods.

Here are the reasons I believe this group of Caucasians in Kentucky had good occlusion:
  • A nutrient-rich, whole foods diet, presumably including organs.
  • Prolonged breast feeding.
  • No bottle-feeding or modern pacifiers.
  • Tough foods on a regular basis.
Common Ground

I hope you can see that populations with excellent teeth do certain things in common, and that straying from those principles puts the next generation at a high risk of malocclusion. Malocclusion is a serious problem that has major implications for health, well-being and finances. In the next post, I'll give a simplified summary of everything I've covered in this series. Then it's back to our regularly scheduled programming.

Malocclusion: Disease of Civilization, Part VII

Jaw Development During Adolescence

Beginning at about age 11, the skull undergoes a growth spurt. This corresponds roughly with the growth spurt in the rest of the body, with the precise timing depending on gender and other factors. Growth continues until about age 17, when the last skull sutures cease growing and slowly fuse. One of these sutures runs along the center of the maxillary arch (the arch in the upper jaw), and contributes to the widening of the upper arch*:

This growth process involves MGP and osteocalcin, both vitamin K-dependent proteins. At the end of adolescence, the jaws have reached their final size and shape, and should be large enough to accommodate all teeth without crowding. This includes the third molars, or wisdom teeth, which will erupt shortly after this period.

Reduced Food Toughness Correlates with Malocclusion in Humans

When Dr. Robert Corruccini published his seminal paper in 1984 documenting rapid changes in occlusion in cultures around the world adopting modern foodways and lifestyles (see this post), he presented the theory that occlusion is influenced by chewing stress. In other words, the jaws require good exercise on a regular basis during growth to develop normal-sized bones and muscles. Although Dr. Corruccini wasn't the first to come up with the idea, he has probably done more than anyone else to advance it over the years.

Dr. Corruccini's paper is based on years of research in transitioning cultures, much of which he conducted personally. In 1981, he published a study of a rural Kentucky community in the process of adopting the modern diet and lifestyle. Their traditional diet was predominantly dried pork, cornbread fried in lard, game meat and home-grown fruit, vegetables and nuts. The older generation, raised on traditional foods, had much better occlusion than the younger generation, which had transitioned to softer and less nutritious modern foods. Dr. Corruccini found that food toughness correlated with proper occlusion in this population.

In another study published in 1985, Dr. Corruccini studied rural and urban Bengali youths. After collecting a variety of diet and socioeconomic information, he found that food toughness was the single best predictor of occlusion. Individuals who ate the toughest food had the best teeth. The second strongest association was a history of thumb sucking, which was associated with a higher prevalence of malocclusion**. Interestingly, twice as many urban youths had a history of thumb sucking as rural youths.

Not only do hunter-gatherers eat tough foods on a regular basis, they also often use their jaws as tools. For example, the anthropologist and arctic explorer Vilhjalmur Stefansson described how the Inuit chewed their leather boots and jackets nearly every day to soften them or prepare them for sewing. This is reflected in the extreme tooth wear of traditional Inuit and other hunter-gatherers.

Soft Food Causes Malocclusion in Animals

Now we have a bunch of associations that may or may not represent a cause-effect relationship. However, Dr. Corruccini and others have shown in a variety of animal models that soft food can produce malocclusion, independent of nutrition.

The first study was conducted in 1951. Investigators fed rats typical dry chow pellets, or the same pellets that had been crushed and softened in water. Rats fed the softened food during growth developed narrow arches and small mandibles (lower jaws) relative to rats fed dry pellets.

Other research groups have since repeated the findings in rodents, pigs and several species of primates (squirrel monkeys, baboons, and macaques). Animals typically developed narrow arches, a central aspect of malocclusion in modern humans. Some of the primates fed soft foods showed other malocclusions highly reminiscent of modern humans as well, such as crowded incisors and impacted third molars. These traits are exceptionally rare in wild primates.

One criticism of these studies is that they used extremely soft foods that are softer than the typical modern diet. This is how science works: you go for the extreme effects first. Then, if you see something, you refine your experiments. One of the most refined experiments I've seen so far was published by Dr. Daniel E. Leiberman of Harvard's anthropology department. They used the rock hyrax, an animal with a skull that bears some similarities to the human skull***.

Instead of feeding the animals hard food vs. mush, they fed them raw and dried food vs. cooked. This is closer to the situation in humans, where food is soft but still has some consistency. Hyrax fed cooked food showed a mild jaw underdevelopment reminiscent of modern humans. The underdeveloped areas were precisely those that received less strain during chewing.

Implications and Practical Considerations

Besides the direct implications for the developing jaws and face, I think this also suggests that physical stress may influence the development of other parts of the skeleton. Hunter-gatherers generally have thicker bones, larger joints, and more consistently well-developed shoulders and hips than modern humans. Physical stress is part of the human evolutionary template, and is probably critical for the normal development of the skeleton.

I think it's likely that food consistency influences occlusion in humans. In my opinion, it's a good idea to regularly include tough foods in a child's diet as soon as she is able to chew them properly and safely. This probably means waiting at least until the deciduous (baby) molars have erupted fully. Jerky, raw vegetables and fruit, tough cuts of meat, nuts, dry sausages, dried fruit, chicken bones and roasted corn are a few things that should stress the muscles and bones of the jaws and face enough to encourage normal development.


* These data represent many years of measurements collected by Dr. Arne Bjork, who used metallic implants in the maxilla to make precise measurements of arch growth over time in Danish youths. The graph is reproduced from the book A Synopsis of Craniofacial Growth, by Dr. Don M. Ranly. Data come from Dr. Bjork's findings published in the book Postnatal Growth and Development of the Maxillary Complex. You can see some of Dr. Bjork's data in the paper "Sutural Growth of the Upper Face Studied by the Implant Method" (free full text).


** I don't know if this was statistically significant at p less than 0.05. Dr. Corruccini uses a cutoff point of p less than 0.01 throughout the paper. He's a tough guy when it comes to statistics!

*** Retrognathic.

Phil heath youtube video - "Phil heath is my dad :D (joke)".

new Phil heath youtube video, well kind of, just found this video on youtube of a amateur odybuilder posing, video title says "Phil heath is my dad :D", i think the poser is meaning in relation to him having such good genetics, and muscle shape like phil heath.

though the guys shape also has a look of dexter jackson as well.



can the real phil heath stand up, phil heath arms, phil being known for some of the biggest arms in bodybuilding:

phil-heath

going to be looking at the phil heath diet and phil heath workout in some upcoming posts as well.

Book Review: S.P.E.E.D.

This book was sent to me by Matt Schoeneberger, who co-authored it with Jeff Thiboutot. Both have master's degrees in exercise science and health promotion. S.P.E.E.D. stands for Sleep, Psychology, Exercise, Environment and Diet. The authors have attempted to create a concise, comprehensive weight loss strategy based on what they feel is the most compelling scientific evidence available. It's subtitled "The Only Weight Loss Book Worth Reading". Despite the subtitle that's impossible to live up to, it was an interesting and well-researched book. It was a very fast read at 205 large-print pages including 32 pages of appendices and index.

I really appreciate the abundant in-text references the authors provided. I have a hard time taking a health and nutrition book seriously that doesn't provide any basis to evaluate its statements. There are already way too many people flapping their lips out there, without providing any outside support for their statements, for me to tolerate that sort of thing. Even well-referenced books can be a pain if the references aren't in the text itself. Schoeneberger and Thiboutot provided appropriate, accessible references for nearly every major statement in the book.

Chapter one, "What is a Healthy Weight", discusses the evidence for an association between body weight and health. They note that both underweight and obesity are associated with poor health outcomes, whereas moderate overweight isn't. While I agree, I continue to maintain that being fairly lean and appropriately muscled (which doesn't necessarily mean muscular) is probably optimal. The reason that people with a body mass index (BMI) considered to be "ideal" aren't healthier on average than people who are moderately overweight may have to do with the fact that many people with an "ideal" BMI are skinny-fat, i.e. have low muscle mass and too much abdominal fat.

Chapter 2, "Sleep", discusses the importance of sleep in weight regulation and overall health. They reference some good studies and I think they make a compelling case that it's important. Chapter 3, "Psychology", details psychological strategies to motivate and plan for effective weight loss.

Chapter 4, "Exercise", provides an exercise plan for weight loss. The main message: do it! I think they give a fair overview of the different categories of exercise and their relative merits, including high-intensity intermittent training (HIIT). However, the exercise regimen they suggest is intense and will probably lead to overtraining in many people. They recommend resistance training major, multi-joint exercises, 1-3 sets to muscular failure 2-4 days a week. I've been at the higher end of that recommendation and it made my joints hurt, plus I was weaker than when I strength trained less frequently. I think the lower end of their recommendation, 1 set of each exercise to failure twice a week, is more than sufficient to meet the goal of maximizing improvements in body composition in most people. My current routine is one brief strength training session and one sprint session per week (in addition to my leisurely cycle commute), which works well for me on a cost-benefit level. However, I was stronger when I was strength training twice a week and never going to muscular failure (a la Pavel Tsatsouline).

Chapter 5, "Environment", is an interesting discussion of different factors that promote excessive calorie intake, such as the setting of the meal, the company or lack thereof, and food presentation. While they support their statements very well with evidence from scientific studies, I do have a lingering doubt about these types of studies: as far as I know, they're all based on short-term interventions. Science would be a lot easier if short-term always translated to long term, but unfortunately that's not the case. For example, studies lasting one or two weeks show that low glycemic index foods cause a reduction in calorie intake and greater feelings of fullness. However, this effect disappears in the long term, and numerous controlled trials show that low glycemic index diets have no effect on food intake, body weight or insulin sensitivity in the long term. I reviewed those studies here.

The body has homeostatic mechanisms (homeostatic = maintains the status quo) that regulate long-term energy balance. Whether short-term changes in calorie intake based on environmental cues would translate into sustained changes that would have a significant impact on body fat, I don't know. For example, if you eat a meal with your extended family at a restaurant that serves massive portions, you might eat twice as much as you would by yourself in your own home. But the question is, will your body factor that huge meal into your subsequent calorie intake and energy expenditure over the following days? The answer is clearly yes, but the degree of compensation is unclear. Since I'm not aware of any trials indicating that changing meal context can actually lead to long-term weight loss, I can't put much faith in this strategy (if you know otherwise, please link to the study in the comments).

Chapter 6, "Diet", is a very brief discussion of what to eat for weight loss. They basically recommend a low-calorie, low-carb diet focused on whole, natural foods. I think low-carbohydrate diets can be useful for some overweight people trying to lose weight, if for no other reason than the fact that they make it easier to control appetite. In addition, a subset of people respond very well to carbohydrate restriction in terms of body composition, health and well-being. The authors emphasize nutrient density, but don't really explain how to achieve it. It would have been nice to see a discussion of a few topics such as organ meats, leafy greens, dairy quality (pastured vs. conventional) and vitamin D. These may not help you lose weight, but they will help keep you healthy, particularly on a calorie-restricted diet. The authors also recommend a few energy bars, powders and supplements that I don't support. They state that they have no financial connection to the manufacturers of the products they recommend.

I'm wary of their recommendation to deliberately restrict calorie intake. Although it will clearly cause fat loss if you restrict calories enough, it's been shown to be ineffective for sustainable, long-term fat loss over and over again. The only exception is the rare person with an iron will who is able to withstand misery indefinitely. I'm going to keep an open mind on this question though. There may be a place for deliberate calorie restriction in the right context. But at this point I'm going to require some pretty solid evidence that it's effective, sustainable, and doesn't have unacceptable side effects.

The book contains a nice bonus, an appendix titled "What is Quality Evidence"? It's a brief discussion of common logical pitfalls when evaluating evidence, and I think many people could benefit from reading it.

Overall, S.P.E.E.D. was a worthwhile read, definitely superior to 95% of fat loss books. With some caveats mentioned above, I think it could be a useful resource for someone interested in fat loss.

Thank You

I'd like to extend my sincere thanks to everyone who has supported me through donations this year. The money has allowed me to buy materials that I wouldn't otherwise have been able to afford, and I feel it has enriched the blog for everyone. Here are some of the books I've bought using donations. Some were quite expensive:

Food and western disease: health and nutrition from an evolutionary perspective. Staffan Lindeberg (just released!!)

Nutrition and disease. Edward Mellanby

Migration and health in a small society: the case of Tokelau. Edited by Albert F. Wessen

The saccharine disease. T. L. Cleave

Culture, ecology and dental anthropology. John R. Lukacs

Vitamin K in health and disease. John W. Suttie

Craniofacial development. Geoffrey H. Sperber

Western diseases: their emergence and prevention. Hugh C. Trowell and Denis P. Burkitt

The ultimate omega-3 diet. Evelyn Tribole

Our changing fare. John Yudkin and colleagues


Donations have also paid for many, many photocopies at the medical library. I'd also like to thank everyone who participates in the community by leaving comments, or by linking to my posts. I appreciate your encouragement, and also the learning opportunities.

Paleo is Going Mainstream

There was an article on the modern "Paleolithic" lifestyle in the New York Times today. I thought it was a pretty fair treatment of the subject, although it did paint it as more macho and carnivorous than it needs to be. It features three attractive NY cave people. It appeared in the styles section here. Paleo is going mainstream. We can expect media health authorities to start getting defensive about it any minute now.

Dr. Rosedale Replies

A few months ago, I posted link to an article by Dr. Ron Rosedale and made a few comments about it. Dr. Rosedale has sent a reply to my comments, which I have agreed to publish as a new post because they may be of interest to readers. In the following exchange, my numbered comments are in quotes and Dr. Rosedale's replies follow them.

Dr. Rosedale's Comments

1. Dr. Rosedale says that insulin's ability to regulate blood sugar is a minor role, and that other hormones do the same thing. Tell that to a type 1 diabetic. Excessive blood glucose is Not Good, and that's what you get if there isn't enough insulin around.
What I have said was that insulin does not control glucose levels in the blood, and that insulin's biological purpose (not ability) plays only a minor role in BS control... and that is a correct statement. Insulin reduces blood glucose by storing it for a rainy day as glycogen and fat, but not for the purpose of regulating blood sugar levels. The control of BS is in an upward direction, not a downward direction. The problem in our evolutionary history was to have enough BS for emergency anaerobic respiration and for those tissues that require it such as red blood cells. Lowering blood sugar was never a priority in our history. For one, it didn't rise much very often. There wasn't much glucose around. Uncooked rice and potatoes, etc., are mostly indigestible. The sugar that was around, such as in fruit, required considerable effort to obtain therefore lowered the sugar prior to obtaining it. Also, the sugar that is in fruit is largely fructose which doesn't convert that much into glucose but rather into fat in the liver. Even if it did raise blood sugar levels, even if it did cause diabetes in evolutionary time, nature would consider that irrelevant as it wouldn't have killed people prior to the reproductive years, only post-reproductively when nature doesn't give a damn.

Furthermore, insulin's major purpose goes way beyond sugar. At the very least, it is a nutrient storage hormone being relevant not only in glucose storage, but also in fat and protein (amino acid) storage. It also plays a significant role in micronutrient storage and conversions. However, overwhelmingly more important, is insulin's role as a nutrient sensor greatly influencing genetic expression and modifying the rate of aging by up or down regulating maintenance and repair.
2. I'm not convinced by the theory that organisms balance reproduction and repair, emphasizing one at the expense of the other. The amount of energy it takes to fuel cellular repair processes is negligible compared to the amount it takes to maintain body temperature, fuel the brain and contract skeletal muscles. Why not just have the organism eat an extra half-teaspoon of mashed potatoes to fuel the heat-shock proteins and make a little extra catalase? I think the true reasons behind lifespan extension upon caloric restriction will turn out to be more complex than a balance between reproduction and repair.
Stephan does not have to be convinced. Almost everybody who studies the biology of aging is convinced that there is a dichotomy between reproduction and maintenance and repair and that biologically a cell can spend the majority of available resources towards one or the other, but not both. This can actually be shown genetically as the up or down regulation of the expression of genes regulating heat shock proteins, intracellular antioxidant systems, DNA repair enzymes, "garbage collection", etc versus the up or down regulation of genes which regulate reproductive behavior. It should also be noted that excessive reproductive behavior is, in individual cells of multicellular organisms, a strong predisposition to cancer. Furthermore, Stephan’s statement that it takes negligible energy for maintenance and repair is very wrong. In fact one could make the argument that almost all of the energy spent by both individual cells and by the cell societies of multi-celled organisms when not reproducing is towards maintenance and repair.


3. I disagree with the idea that carbohydrate itself is behind elevated fasting insulin and leptin. Just look at the Kitavans. They get 69% of their calories from high-glycemic-load carbohydrates, with not much fat (21%) or protein (10%) to slow digestion. Yet, they have low fasting insulin and remarkably low fasting leptin. I believe the fasting levels of these hormones are more responsive to macronutrient quality than quantity. In other words, what matters most is not how much carbohydrate is in the diet, but where the carbohydrate comes from. The modern Western combination of carelessly processed wheat, sugar and linoleic acid-rich vegetable oil seems to be particularly harmful.
It is not where the carbohydrates come from, but where the carbohydrates go. In other words, what carbohydrates are digested into, i.e what the cells are being fed. Feeding them glucose, fructose, galactose and amino acids as energy (as opposed to using the amino acids whole as structural components) is bad.

Stephan himself could answer this one. It's not the percent of calories from carbohydrates that is relevant; it is the absolute amount of non-fiber carbohydrates that is relevant as the glycemic load.

A few further comments on the Kitavans, though I really am not an expert on their diet:

I find that indigenous diets are only partially helpful as there are so many variables that can go unaccounted for. I prefer the more elementary sciences to form opinions. However, it sounds like there really isn't that much non-fiber carbohydrate in the diet and there is considerable fiber, fish and coconut oil, and moderate to low protein, all of which are quite fine for health. If it is known, the total gram quantities of macronutrients would be good to know. Another important point; what is their lifespan? It sounds like it might be long, but it would be nice to know a more accurate figure. It is not weight loss that we should be after, it is health as indicated by a long and youthful lifespan. Another point; though they (the Kitavans) may be doing well if one defines well as better than most human counterparts, it isn't really saying much. The majority of society eats so badly that it really is not difficult to eat a diet that is better. What I am after is not just better, but best. Perhaps one could take the Kitavan diet and improve upon it by reducing the non-fiber carbohydrate content and perhaps adding more beneficial fats and oils. It is quite possible, in fact probable, that there have been no human societies that have eaten an ideal diet. We can only use what modern science is telling us to come up with this.

My Reply to Dr. Rosedale

Thank you for your comments.

1. I agree with you that control of blood sugar is not insulin's only purpose, and that there are other mechanisms of blood glucose control. There were several papers published recently showing that type 1 diabetic rats (lacking insulin) can be restored to a normal blood glucose level and near-normal glucose tolerance by infusing leptin into the lateral or the third cerebral ventricles (1, 2). This was totally independent of insulin, because the rats weren't producing any. And yes, insulin signaling influences lifespan in a number of animal models.

However, insulin is still the primary controller of blood sugar under normal circumstances, as shown in type 1 diabetes where the primary defect is in insulin production. Furthermore, excessively elevated glucose is damaging per se, due to protein glycation, competition with vitamin C, etc. Therefore, the glucose-controlling function of insulin is important.

I do not agree that glucose from starch and fruit played an insignificant role in human evolution. A number of modern hunter-gatherers eat a significant amount of starch, and our ancestors probably did as well, as soon as they could cook. The timeline of cooking is debated, but we've probably been doing it for at least half a million years, or as long as Homo sapiens has existed. Fruit sugar is roughly 50% glucose, as is honey.

2. As someone who spent two years in the field of aging research, I don't see a scientific consensus on the idea that reproduction and aging are in balance with one another. The two correlate with one another in some, but not all models. I was at a seminar just the other day by Dr. Linda Partridge, from the Max Planck institute, and she was talking about her lifespan experiments in fruit flies. She was able to independently modify lifespan and fecundity using amino acid restriction, leading her to the conclusion that there is no link between the two in her model. She published these data recently in the journal Nature (reference).

Regarding the energy required for cellular maintenance, a little math is instructive here.
I eat maybe 3,200 calories a day, which is normal for an active male of my weight. My basal metabolic rate is roughly 1,700 kcal per day. So 1,500 of my calories have already gone to moving my skeletal muscles. Of the basal metabolic rate, the vast majority comes from maintaining body temperature. Thermogenesis is why cold-blooded animals only need to eat a fraction of the calories mammals do. Then there's cardiac function, and smooth muscle activity, which eat up more calories. Then there are the energy-intensive cellular processes of maintaining ionic gradients across cell membranes (which is why the brain eats up 20% of our calories) and protein synthesis.

After you subtract out all those functions, only a small fraction of total caloric intake is left for other cellular processes. So the caloric needs for processes that combat cellular aging (DNA repair, etc.) are quite low, compared to overall energy requirements. This is consistent with the fact that naked mole rats, which live ten times longer than
Rattus norvegicus, have a similar basal metabolic rate to one another. Keeping cells from being damaged is not a particularly energy-intensive process, and so we have to look elsewhere for the reason why it hasn't been prioritized by evolution.

3. The Kitavan diet is high in digestible starch. The foods they eat have been characterized for starch content, glycemic index, and fiber content. Their diet overall has a high glycemic load, is 69% carbohydrate by calories, and is similar in calories to the American diet. They have a low BMI, a low fasting insulin and low fasting glucose. I agree that there are many factors at play here, and the example of the Kitavans doesn't necessarily give carbohydrate a free pass in all situations. But it does show that a high carbohydrate intake, at least under certain circumstances, is compatible with low fasting insulin, high insulin sensitivity, leanness, and apparent good health.

I also agree that the Kitavans are not really a good model of longevity. Although they live a long time relative to other non-industrial cultures, and have individuals exceeding 95 years old, they don't have a longer average lifespan than people in affluent nations. One can guess that it's due to a lack of modern medical care to treat infectious diseases, and I think that's likely to play a role, but ultimately it's speculation. It's an open question whether you could improve their lifespan by reducing the non-fiber carbohydrate content of their diet, but I'm skeptical.

In the end, it's also an open question whether or not you can extend life by restricting carbohydrate. For the typical overweight American who responds well to carbohydrate restriction, it's reasonable to speculate that it might. For an insulin-sensitive, lean American, it's not clear that it would have much benefit, outside of reducing potentially harmful foods such as gluten and sugar. Although insulin signaling is probably tied up with lifespan in humans, as in many other species, no one has shown that post-meal insulin spikes caused by carbohydrate, as opposed to chronically elevated insulin and insulin resistance, is harmful. The story is not as simple as "more serum insulin = shorter lifespan".

Is there any evidence that carbohydrate restriction extends lifespan in a non-carnivorous mammal such as a rodent or monkey? I'm open to the possibility, but I haven't seen any studies. I'll look forward to them.

phil heath picture real or enhanced picture phil the gift heath looking massive full muscle bellies

now is this picture of phil heath real really shows phil heathand why he is seen as a potential mr olympia the muscle bellies on phil heath are phill hehe as in full.

not sure with this picture if it has been slightly tweaked or not to make phil look bigger, or if it is the angle that it is phographed at that gives that effect, but phil heath looks one of his most massive in the picture.

biecps on phil and triceps is one of the things phil heath is known for his arms must be getting close to 24 inches at times they look unreal.

also to balance out those massive biceps and triceps phil heath also has massive forearms in proportion with the upper arm muscles.

actually i think phil heath has had to train to bring up other body parts to balance out his arm size, like phil heath had to do a lot of should training to make up the balance between his arms.

phil-heath-the-gift-unwrapped